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Abstract 

This report describes key ideas underlying the application of Quantification of Margins 
and Uncertainties (QMU) to nuclear weapons stockpile lifecycle decisions at Sandia 
National Laboratories. While QMU is a broad process and methodology for generating 
critical technical information to be used in stockpile management, this paper emphasizes 
one component, which is information produced by computational modeling and 
simulation. In particular, we discuss the key principles of developing QMU information 
in the form of Best Estimate Plus Uncertainty, the need to separate aleatory and epistemic 
uncertainty in QMU, and the risk-informed decision making that is best suited for 
decisive application of QMU. The paper is written at a high level, but provides a 
systematic bibliography of useful papers for the interested reader to deepen their 
understanding of these ideas. 
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1. Introduction 
 
This paper presents a high-level summary of key ideas underlying one conception of 
Quantification of Margins and Uncertainties (QMU) for Sandia National Laboratories’ 
(Sandia’s) nuclear weapons (NW) program. Our intent is to present QMU as a 
methodology that, when appropriately tailored, is applicable to all the key components of 
the NW lifecycle. These components are generally summarized as (1) stockpile 
requirements, (2) design, (3) qualification, (4) production, (5) maintenance, and 
(6) retirement. Our perspective emphasizes modeling and simulation (M&S) and thus is 
not exhaustive. 
 
QMU is generically defined by Sharp and Wood-Schultz (2003) as “a framework that 
captures what we do and do not know about the performance of a nuclear weapon in a 
way that can be used to address risk and risk mitigation.” Goodwin and Juzaitis (2003) 
simply claim that QMU is a component in a certification methodology for the NW 
stockpile. The JASON study of QMU (Eardley et al., 2005) observes that the meaning 
and implications of QMU were still unclear to the study team at that time.  
 
For this paper, QMU is a process used to produce information of a specific kind that is 
applicable to nuclear-stockpile decision making. As discussed here, stockpile decision 
making is about the technical management of the engineered systems in the U.S. nuclear 
stockpile. We are thus most concerned with requirements on the technical performance of 
these NW engineered systems. Performance requirements contain desirable or required 
performance thresholds and their associated performance margins (explained further 
below). QMU is thus the mathematical methodology that quantifies these thresholds and 
margins, as well as the associated uncertainty in their evaluation, through a “process for 
planning and analyzing data obtained from both tests and M&S . . .” (Klenke, 2006). 
QMU information is, of course, influenced in detail by the nature of the NW systems 
under consideration (nuclear explosive system, electronic systems, individual 
components, and so forth).  
 
Given performance requirements, risk1 in stockpile stewardship can then be generally 
understood to be the probability or possibility (we simply say likelihood below) of failure 
to achieve the requirements, particularly failure to achieve the required/desired 
performance thresholds and margins. From our point of view, the decision making with 
which we are concerned must deal with this kind of risk. Developing a high-quality basis 
for deciding that performance will be achieved in a complex engineered system is 
essentially equivalent to developing a high-quality basis for understanding the likelihood 
that the needed performance will not be achieved. QMU provides information that helps, 
indeed is necessary, to quantify and understand the various performance risks in the 
stockpile lifecycle and that contributes to the technical basis demanded by the decision 
making. 
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Risk has a broader, more complex connotation as well—one that is not necessarily 
compatible with our use in QMU (see Althaus, 2005; Beck, 2004; Jasanoff, 1986; 
Krimsky and Golding, 1992; Slovic, 2003).2 Rather, our use of the word “risk” is more 
compatible with a reliability framework for studying the likelihood of achieving or failing 
to achieve performance requirements expressed through thresholds and margins. The 
reader should keep this in mind. 
 
QMU is, first and foremost, a decision-support methodology. Goodwin and Juzaitis 
(2003) discuss this from a joint Los Alamos National Laboratory–Lawrence Livermore 
National Laboratory perspective). The decision making that QMU supports is formally 
known as risk-informed decision making. As we explain in Section 2, this risk-informed 
decision making accounts for other factors in addition to QMU-generated performance 
assessments. If decisions rest exclusively on the results of QMU assessments, then the 
decision process is called risk-based decision making.  
 
We discuss the historical basis for our conception of QMU in Section 2. We emphasize 
that risk-informed decision methodologies are generally accepted by regulatory bodies 
that are involved with complex technical policy decisions in the United States (Garrick 
and Christie, 2002). These bodies have generally found risk-based decision making to 
ultimately be lacking. Why? The short answer is that in complex decision making, risk-
based decisions—essentially resting decision outcomes solely on the quantification of 
risk (in our case, the likelihood of failure to achieve NW performance thresholds and 
margins)—do not focus attention on important political, social, and economic factors that 
are inevitably present. Because of incomplete technical knowledge, these decisions 
provide only the illusion of the absence of judgment, or assertion, in the decision process. 
Risk-informed decision methods embrace these nontechnical factors, explicitly account 
for incomplete knowledge, and acknowledge the presence of judgment in the decision 
process. 
 
In Sections 3 and 4, we discuss an important technical foundation for QMU, which is the 
formulation of key information in the form of Best Estimate Plus Uncertainty. This lies at 
the heart of the credibility and uncertainty-quantification methodologies that define QMU 
as a technical decision-support methodology. In Section 5, we emphasize the credibility 
of the M&S information that will be used in stockpile stewardship and review the 
particular role that rigorous verification and validation (V&V) play in establishing its 
credibility. 
 
Section 6 discusses some issues that are typically raised about QMU-like activities and 
risk-informed decisions. We summarize our key conclusions in Section 7. A broad set of 
references is included to aid to the reader, as this paper does not provide a self-contained 
technical discussion of the issues. 
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2. Risk-Informed Decision Analysis for the Stockpile 
 
QMU (Quantitative Margins and Uncertainty) is a decision-support methodology for 
complex technical decisions centering on performance thresholds and associated margins 
for engineered systems that are made under conditions of uncertainty. QMU supports 
management of the U.S. nuclear stockpile lifecycle, from driving technical requirements, 
through design and qualification, to production and maintenance.3 While some have 
emphasized that QMU has a particularly important role in weapon performance, 
qualification, and stockpile assessment in the no-nuclear test era (Goodwin and Juzaitis, 
2003; Sharp and Wood-Schultz, 2003), our current premise is that QMU is also needed 
for all phases of stockpile decision making. 
 
QMU is not (1) a number or a set of numbers, (2) a set of functions that generates 
numbers, or (3) or an uncertainty-quantified analog of a set of numbers or functions. 
Rather, QMU is a methodology. In other words, it is a collection of methods that rest on 
three key elements, with the goal of supporting nuclear-stockpile decision making under 
uncertainty. The three key elements of our QMU methodology stress stockpile-lifecycle 
performance characteristics and are conveniently summarized as follows: 
 

 Element 1: Identification and specification of performance threshold(s) 
 

 Element 2: Identification and specification of associated performance margin(s), 
that is, measure(s) of exceeding performance thresholds4 

 
 Element 3: Quantified uncertainty in threshold and margin specifications 

 
QMU quantifies the three major elements (hence, the presence of the word “Quantitative” 
in QMU) and produces numbers, random variables, or some other more-general measures 
of uncertainty. The methodology that produces the numbers, and its formal and credible 
role within the larger decision context, is especially important. 
 
An example of a performance threshold is the functioning of an electrical system. A 
performance threshold could be defined by the requirement to deliver an electrical signal 
having a minimum voltage of . If the delivered voltage in a test of the hardware is 
then 

minV

DV , the margin is defined as D minV V− . Because there may be uncertainty in , due 
to requirements uncertainties, and because 

minV

DV is uncertain, due to hardware build 
variations, there is likely to be a requirement that the margin should be “big enough,” 
such as the requirement that . The margin specification 0D minV V M− ≥ > M itself is 
uncertain because of the requirements. It may be imposed basically by expert judgment, 
by observing the performance of a large number of built systems, or by a combination of 
the two. Confidence in achieving the performance threshold in any fielded version of 
this electrical system should increase with the size of M. Other factors constrain the size 
of M, however, such as economics. One example of decision making under uncertainty 
related to margins and their uncertainty is how to balance increased performance 

minV
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confidence through increasing M versus our inability to make M large enough to 
completely remove performance uncertainty. Where does one draw the line? And 
multiplying this problem by thousands of coupled variations of similar questions gives 
one an idea of the overall scope and complexity of the QMU challenge that is posed by 
entire weapon systems. A more realistic example of attacking such a challenge is found 
in Helton et al. (2006) and Romero et al. (2005). 
 
Element 3 is a crucial link to the decision process within which the QMU methodology is 
applied. QMU, with its careful structuring of information, its emphasis on Best Estimate 
Plus Uncertainty (see Section 3 below), and its rigorous attention to requirements, 
supports a specific paradigm of decision making under uncertainty that is highly relevant 
to technical policy issues. We call this paradigm Risk-Informed Decision Analysis 
(RIDA). RIDA acknowledges the role that human judgment plays in stockpile decisions 
and that technical information cannot be the sole basis for these decisions. This is 
because of gaps in the technical information, as well as social, economic, and political 
factors that inevitably influence complex national decisions. RIDA is thus compatible 
with an extensive body of work on the role of cognitive barriers and uncertainty in 
complex decision making (see Cooksey, 1996, and Hastie and Dawes, 2001, for 
example). 
 
RIDA does not base its decision outcomes solely on the results of QMU. Rather, QMU 
provides only part of the input into the decision process. We might say that QMU is 
intended for “QMU-informed decision making” rather than for “QMU-based decision 
making.” We maintain our language of “risk-informed” in this paper because of its 
connection to nationally important technical decision-support approaches that have a long 
history of application. We briefly review this historical connection at the end of this 
section. If readers prefer to think of our concepts as more appropriately called “QMU-
informed decision making,” then they should do that. 
 
As listed below, there are good reasons to expect that the decision process that properly 
uses QMU would only consider QMU as one subset of the important decision variables.  
 

 There will be uncertainty in the credibility of QMU results for complex problems, 
and there will be subjective information in these results. 

 
 There will be incomplete knowledge present, for example, in the form of both 

known and unknown unknowns. 
 

 Factors such as resource limitations (e.g., time constraints), as well as social, 
economic, and political factors that are external to the relevant scientific 
information, will inevitably influence the decision process. 

 
 Complex technical decisions often rely on scientific and engineering judgment, 

and stockpile stewardship is no different. 
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That complex decision making under uncertainty necessarily entails these factors is well 
known (Helton, 1994). But also consider the following example. If we presume the 
simple formalism that in some sense QMU is simply a set of margin/uncertainty ratios 
(called confidence ratios by Sharp and Wood-Schultz [2003]), say, 

( ) ( )
1

1
, , n

n

MM
U M U M

⎧
⎨
⎩ ⎭

… ⎫
⎬ , where M is a margin and ( )U M is the quantified 

uncertainty in that margin (see Sharp and Wood-Schultz for an illustration), then a risk-
based decision process essentially makes a decision based only on this set of numbers. 
We write this kind of decision schematically as 
 

( ) ( )
1

1
Decision , , n

n

MMD U M U M
⎡ ⎤= ⎢ ⎥⎣ ⎦

… . 

 
This decision approach is not advocated by Sharp and Wood-Schultz. They comment on 
the presence of “other factors” in the decision process, such as lack of knowledge and 
judgment, and they prefer a decision formalization that instead looks something like 
 

( ) ( )
1

1
Decision , , ;other factorsn

n

MMD U M U M
⎡ ⎤= ⎢ ⎥⎣ ⎦

… . 

 
This schematic is still a more restricted view of QMU than we advocate here because it 
still suggests that QMU is mainly a machine that produces key numbers that highly 
influence a decision. But, in fact, the various, important details of the uncertainty, 
especially how it might be reducible to the quantitative expression ( )U M , are hidden in 
the construction of the ratios. “Other factors” might also be directly present in the ratios 
themselves, but this is far from transparent to the decision maker in this formalism. Such 
ratios also imply that uncertainty can be quantified in a form such as summary statistics, 
leaving it unclear how a methodology appropriate for separately quantifying the impact 
of variability and incomplete knowledge, such as the important probability of frequency 
approach of Kaplan and Garrick (1981),5 can be used in the development of such ratios.  
 
Whatever mathematical form an application of RIDA to a stockpile lifecycle decision 
might take, it requires that all uncertainties be identified and characterized. This includes 
the separate quantification of both variability (i.e., aleatory uncertainty) and lack-of-
knowledge uncertainty (i.e., epistemic uncertainty), as well as definitions of “other 
factors” and quantified characterizations of their individual contributions to uncertainty. 
RIDA also requires attention to uncertainties in requirements and decision criteria, such 
as definitions of performance thresholds that are fundamental to the decision making. In 
addition, RIDA requires complete transparency of all the information to make the 
decision process understandable, traceable, and reproducible (documented). 
 
QMU and its application in RIDA represent an evolution of the stockpile decision 
process favored by Sandia in the past.6 We have depicted this evolution in Figure 1, 
where we suggest that RIDA lies at the top of two decision-support branches. One, 
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labeled C3, represents a historical theme in Sandia’s stockpile decision processes. We 
characterize this approach as emphasizing conservative, yet still assertion-based, decision 
methods. The three elements of conservatism that are always present are (1) conservative 
requirements, (2) conservative scenarios, and (3) conservative assessments. This 
historical decision approach used by Sandia resonates strongly with test-based activities; 
that is, the decision process anticipates that most of the information, certainly most of the 
important information, is provided by test and experimental programs.  
 
 

 
 
 
Figure 1. Elements of a decision paradigm shift that supports science-based engineering 
transformation through QMU and its connection to RIDA. 
 
The product of this historical decision process typically (1) leads to the assertion of 
performance margins without precise quantification of the engineered margins, (2) does 
not directly address the scientific basis for why the relevant engineered systems behave 
the way they do, and (3) is not a fully effective or efficient method to understand 
sensitivities or uncertainties in the margin assessments or adherence to the underlying 
probabilistic requirements. This is primarily because the testing itself is limited, often by 
the social, economic, and political factors that we have previously stressed. Incomplete 
test information must inevitably influence decisions to include assertions. Formal and 
critical scrutiny of the asserted decision outcomes through aggressive peer review is 

C3: 
• Conservative Requirements
• Conservative Scenarios
• Conservative Assessments

QMU: 
Quantified Margins 
and  Uncertainties

BE+U

Test/Experiment
Relevant Physical Data

Stockpile Lifecycle Risk-Informed Decisions:

For improved technical basis, 
communication, decisions

DECISION SUPPORT

Assertion-Based and Challenged via Peer Review

CREDIBILITY
Of Models and 
Experiments

Decision Paradigm Change

M&S
Predictive Capability

Tailored Approach, 
Agile infrastructure

Paradigm Leading 
Applications
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therefore of major importance and has been substantially used in the past (as it would be 
if QMU was more extensively used). 
 
QMU has one goal of more explicitly quantifying margins and their relationship to 
defined performance thresholds. This goal allows uncertainty in both quantified margins 
and performance thresholds, as well as the decision process itself, and clarifies the 
associated uncertainties, incomplete knowledge, and intangible factors that are in the 
decision space. Figure 1 illustrates the key principle in the presentation of this 
information, that is, that information is in the form of Best Estimate Plus Uncertainty 
(BE+U). We discuss this principle in Section 3 in greater detail.  
 
As seen in Figure 1, QMU includes a component of M&S information that is, or will be, 
considerably larger than previous historical NW lifecycle decisions at Sandia. The 
present paper emphasizes M&S information over experimental information, although 
much of what we argue is true for all sources of information in RIDA. We assert that 
M&S information used in stockpile decisions should have a basis of credibility that is 
readily understandable and applicable.  
 
The net effect of Figure 1 is to suggest evolution of Sandia’s stockpile lifecycle decision 
processes to better account for uncertainties; better use M&S information as well as 
experimental information, while still relying on critical information from test and 
experiment; and still allow judgment and assertion in constructing decision outcomes. We 
have also suggested that other general factors, such as appropriate applications and a 
flexible information infrastructure, influence the overall decision process. We call this a 
Decision Paradigm Change in Figure 1, but our claim mainly rests on the qualitative 
differences in the way uncertainty is incorporated in the decision process and the 
(anticipated) revolutionary impact of M&S in the future. We expect that there will be 
cases where decision outcomes will still be test-based in the future. But even in those 
cases, QMU is still an important framework for integrating both testing and an enhanced 
scientific basis within these complex decisions. QMU guides understanding and 
discovery, as well as prioritization and integration of supporting efforts (such as 
sensitivity analysis). QMU also aids in highly risk-averse (we call this regulatory) 
decision making such as qualification and its roll-up into stockpile certification 
pronouncements. And QMU builds transparency for all of the above factors into the 
decision process. A recent example that partially illustrates the way QMU and RIDA 
operate on an NW issue at Sandia is presented in Helton et al. (2006) and Romero et al. 
(2005). 
 
Our conception of QMU tailors an extensive historical methodological basis for 
quantitative performance assessment in risk-informed technical-policy decision making 
outside of the NW program. Sandia has led the application of such methodologies in 
quantitative risk assessments of nuclear power (Breeding et al., 1992; Helton and 
Breeding, 1993) and in development of the quantitative performance assessment for the 
Waste Isolation Pilot Plant (WIPP) (Helton et al., 2000a, 2000b). Sandia has recently 
been named the lead technical laboratory for the Yucca Mountain repository, essentially 
to apply the same decision methodologies there that were applied to WIPP (Helton and 
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Sallaberry, 2006). In our view, QMU is a customized form and application of these past 
RIDA methodologies to a class of decision problems that are needed for the nuclear 
stockpile lifecycle.  
 
The key applications mentioned above rely upon Quantitative Risk Analysis (QRA) in 
the case of U.S. Nuclear Regulatory Commission nuclear reactor safety studies (the NRC 
NUREG-1150 study; see Breeding et al., 1992; USNRC, 1998) or Quantitative 
Performance Analysis (QPA) in the case of Environmental Protection Agency (EPA) 
waste repository assessments (associated with WIPP; see Helton et al., 2000a, 2000b) in 
the same sense that NW stockpile lifecycle RIDA relies upon QMU. There is no clear 
basis for believing that the coupling of margin and uncertainty analysis for informed 
decision making should philosophically differ across these decision domains. QRA, for 
example, produces a quantified picture of the risk of performance failures in nuclear 
reactor operations, while QPA does the same thing for the risk of performance failure of 
repositories. In neither case are decisions based solely on the results of QRA or QPA. 
Rather, the results are used in decisions that necessarily account for myriad other 
concerns. The literature associated with QRA and QPA make this clear. A detailed 
review of QRA/QPA is found in Rechard (1999). Garrick and Christie (2002), Niehaus 
and Szikszai (date unknown), and Keller and Modarres (2005) also provide useful 
historical context on the implementation of QRA/QPA. The main need for NW tailoring 
of past QRA/QPA-informed decision procedures is to account for the very different 
nature of the technical subject-matter disciplines that underlie the key decisions in NW 
stockpile lifecycle management. 
 

3. Best Estimate Plus Uncertainty 
 
Uncertainty enters QMU in several ways. For example, uncertainty is present in the 
specification of thresholds and margins. This uncertainty may arise from imprecision in 
the underlying requirements. Requirements uncertainty has also been common in past 
applications of QRA/QPA, where transformation of imprecise regulatory requirements 
into precise mathematical formulations is needed (see Helton, 1993; Helton and 
Breeding, 1993; Helton et al., 1997; and Helton, 2003). Analysis of the projected 
likelihood of achievement or lack of achievement of performance is based on a wide 
spectrum of information, including experiment and M&S, as well as myriad constraints, 
all of which have uncertainty. NW lifecycle decisions that result from this complex 
picture are necessarily examples of decision making under uncertainty. 
 
Best Estimate Plus Uncertainty Plus Requirements (denoted simply BE+U here) is a 
dominant component of QMU. BE+U applies to all forms of information that are used in 
RIDA. For example, this specification is equally applicable to experimental information 
as it is to M&S information. This consistent form of information allows QMU to 
integrate experiment and M&S information. It also helps make transparent the sources, 
uncertainties, limitations, and strengths of that information. BE+U exposes the driving 
need for credibility of the developed information in QMU. Credibility of the information 
that is then used in RIDA is of special concern, and credibility is a particularly important 
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challenge for M&S information. In our experience, neither M&S results nor test results 
have traditionally been developed and communicated in this form for stockpile lifecycle 
management. 
 
BE (Best Estimate) is the core of understanding what we firmly know in the information. 
It is a function of credibility. The more we know, and the greater our belief in the 
credibility of that information, the more accurate and reliable BE will be. What we do not 
know, and the inevitable variability in a variety of components of information leading to 
BE, introduces uncertainty U. Both BE and U must be identified, quantified, and 
communicated in QMU. 
 
We must deal with two fundamental types of uncertainty in QMU: 
 

Aleatory uncertainty – Also called “irreducible uncertainty” and “stochastic 
variability,” this type of uncertainty is naturally identified, quantified, and 
communicated in terms of probability. We simply will call this type of uncertainty 
variability. Common examples of variability are random variations in 
manufacturing tolerances, material composition, test conditions, and 
environmental factors. 
 
Epistemic uncertainty – Also called “reducible uncertainty,” this type of 
uncertainty is due to incomplete knowledge. Although we may sometimes just 
call this uncertainty, it is necessary to keep in mind that this term always refers to 
uncertainty due to lack of knowledge. Common examples of this type of 
uncertainty are model form uncertainty (that is, uncertainty about the correctness 
of a computational model), both known and unknown unknowns in scenarios, and 
poor-quality test data. It is less appreciated that an acknowledged variability that 
is poorly characterized stochastically due to lack of data must be treated as a lack-
of-knowledge uncertainty. This kind of uncertainty may be quantified using 
probabilistic and statistical concepts, or other methods. 
 

When considering QMU, the variability component of U is expected to be explicitly 
stochastic, with the needed statistical data underlying its quantification expected to be 
available. This requires the existence of a statistically significant database. Epistemic 
uncertainty, and its logical and mathematical distinction from variability in BE+U, is very 
important in stockpile stewardship, where gaps and limitations in predictive capability, 
incomplete experimental data, and poor statistical databases are common. Epistemic 
uncertainty is certainly present when there are not enough test data to statistically 
quantify a presumed aleatory uncertainty. Pilch (2005) discusses this issue, as well as the 
nonprobabilistic quantification of epistemic uncertainty, which is a growing area of 
concern. Readers should also consult Helton and Oberkampf (2004), who introduce a 
special issue of the journal Reliability Engineering and System Safety that is devoted to 
the quantification of epistemic uncertainty using a variety of mathematical formalisms. 
 
Characterization, quantification, and analysis of separated aleatory and epistemic 
uncertainties has been the subject of a vast amount of work in the QRA/QPA technical 
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community. A selection of useful papers that highlight the probabilistic quantification of 
both uncertainties in combined representations and with a view toward RIDA include 
Kaplan and Garrick (1981); Pate-Cornell (1986, 1996, 2002); Apostolakis (1989, 1990); 
Helton (1994, 1997, 1999); Helton, Johnson, and Oberkampf (2004, 2005); Ferson and 
Ginzburg (1996); Kadvany (1996); Winkler (1996); and the special issue of Reliability 
Engineering and System Safety devoted to this topic (Helton and Burmaster, 1996). 
 
The traditional approach to separated aleatory and epistemic uncertainty quantification in 
NRC and WIPP QRAs has been a second-order probability technique (see Helton, 1993, 
1994, 1997, 1999, 2003; Helton and Breeding, 1993; Helton and Burmaster, 1996; Helton 
et al., 1997, 2000a, 2000b; Helton, Johnson, and Oberkampf, 2004, 2005; and Helton and 
Sallaberry, 2006). This is also called “probability of frequency,” as mentioned above. 
 
No matter how well we achieve rigorous and credible BE+U, the remaining unknown 
unknowns, the gaps, and a wide spectrum of constraints force the decision making to still 
conform to RIDA. Specifically in the stockpile lifecycle, quantified uncertainty U is not a 
strict substitute for good design principles, use of safety factors, deployment of redundant 
systems for increased performance reliability, and application of design for 
computational analysis. It is important to systematically broaden uncertainty ranges 
beyond what is justifiable in the search for performance cliffs and unanticipated 
thresholds as well as other decision-threatening regions. Peer review and organizational 
memory are also critical. 
 

4. QMU for System Reliability and Annual Assessment 
 
We believe that an inviting opportunity for moving QMU forward at Sandia is to 
introduce this methodology into the framework for providing total system reliability 
estimates and using them in NW program annual assessment (Hymer and Ives, 2004). 
This challenging problem demands RIDA and can benefit from the increased 
transparency, accuracy, and completeness of the knowledge provided by systematic 
QMU. The NW complex is moving toward “QMUing” the nuclear-explosive packages in 
the enduring stockpile and is beginning to move toward “QMUing” issues in weapon 
system engineering. One manifestation of this is interest in a strategy to perform QMU 
for “critical performance parameters” reported in annual assessment, while 
simultaneously devising a new strategy for the Integrated Stockpile Evaluation program 
(SNL, 2006) applicable for future enduring systems. This state of affairs is coupled with 
the fact that Significant Findings Investigations may introduce additional uncertainty into 
the reliability numbers.  
 
The structure that generates the system reliability “number” is the system-level model 
that embodies the sum total of all that is known about the weapon at any point in time 
from the decision perspective. It is at this level that prioritization and integration of 
supporting efforts (stated goals of QMU in support of RIDA) are best managed. We 
believe that all of these factors put us on a path of formally reevaluating the desirability 
of quantified confidence statements on reported reliability numbers. 
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A key question that should be answered is, How do you evolve to a new methodology 
without discrediting the past? For example, QMU as a decision-support tool is in 
potential conflict with QMU that is restricted to a tool designed for high-fidelity 
sensitivity analysis methodology alone. There are ways to address this concern, including 
(1) focusing awareness that large potential uncertainties, objectively derived, reflect 
current knowledge rather than assessed reliability; (2) allowing decision makers, through 
RIDA, to temper QMU results with other sources of input to the decision process; 
(3) careful management strategies, such as managing on the BE mean and managing the 
correlated research agenda based on recognized uncertainties; (4) not applying QMU in 
absolute terms (e.g., to yields) for the Stockpile Life Extension Program and, instead, 
applying QMU to assess the differences between old and new designs to credibly assert 
“no significant degradation” to a system that was previous qualified by a different 
methodology (e.g., nuclear testing). 
 
While system-level reliability can serve as a good overarching goal for the application of 
QMU and RIDA, we recommend gaining experience with smaller, less complex issues. 
For example, how could additional information provided by QMU methodology intersect 
the current reporting of reliability during annual assessment? Reliability numbers are 
reported as lower-bound best estimates without meaningful confidence limits. Policy 
statements (most recently 1996) do not require such confidence limits. Statistical 
(sampling based) confidence limits can be defined, but there is no generally accepted 
method of measuring epistemic uncertainties and their contribution to the stated 
reliability numbers in these procedures. We observe that characterization of epistemic 
uncertainty contributions is now effectively needed for many of the issues that feed the 
overall system reliability model as Sandia moves into the Integrated Stockpile Evaluation 
program. 
 

5. Credibility of M&S in QMU 
 
QMU-supported RIDA has four key components of information. The first three 
components are analogies of the classical Kaplan-Garrick risk triple (Kaplan and Garrick, 
1981) underlying the NRC/EPA applications of QRA/QPA: 
 

I. Scenario identification – What can happen? 
 

II. Likelihood of scenarios – How likely is it to happen? 
 

III. Consequences of scenarios – What are the consequences if it does happen? 
 
We now point out a fourth component that has always been an important factor in the use 
of QRAs/QPAs and that will be very important for the application of QMU in stockpile 
RIDA: 
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IV. Credibility – How much confidence do we have in the answers to the first 
three questions? 

 
While all of these factors are important, our concern is heightened around component IV. 
This component is a controlling factor in the use of QMU-generated knowledge in 
stockpile decision processes, especially for M&S information. Our foundation for thought 
on this issue is formal verification and validation (V&V) of M&S. Though our focus in 
this section is on V&V for M&S, we emphasize that the issue of credibility of the results 
of QMU is equally great for experimental information as well as for information 
associated with social, economic, and political concerns. Uncertainty in M&S (the origin 
of questions about M&S credibility) has long been understood to be a critical problem in 
QRA/QPA (see, for example, many of the previously cited references as well as Bier, 
1999, and Parry, 1996).  
 
The credibility issue looms large for the information in RIDA that is provided by M&S. 
How credible is the M&S framework on which QMU must be built in the technically 
complex world of stockpile stewardship? In the worst possible case, if M&S is not 
credible, the needs of QMU cannot and will not be met. Addressing the credibility 
challenge for M&S is a critically important problem in QMU. 
 
The Sandia Advanced Simulation and Computing (ASC) V&V program is tightly 
coupled to this issue and has been since its inception in 1999. For reviews and focused 
analyses of the associated challenges, the reader should consult Oberkampf and Trucano 
(2002); Oberkampf, Trucano, and Hirsch (2004); Pilch et al. (2004); and Trucano et al. 
(2002, 2003, 2006). V&V, as developed and implemented at Sandia, provides a 
quantitative basis for measuring the predictive credibility of M&S information entering 
QMU and used for RIDA-based NW lifecycle decisions.  
 
To the degree that QMU methodology, as well as the associated RIDA decision 
formality, must be tailored and agile to respond to the broad qualitative differences in 
decision making across the stockpile lifecycle, V&V, in turn, must address the 
appropriate M&S credibility needs. V&V-based credibility assessment must be flexible 
enough to support the broad spectrum of risk aversion that we anticipate for weapon 
lifecycle QMU, for example, that design is less risk averse and that qualification is highly 
risk averse. The element of credibility was separately called out in Figure 1 as an 
important input into QMU. Sandia’s V&V program has devoted significant attention to 
this issue in the past, but it remains a challenge for the future. We presented an early 
discussion of tailoring credibility assessment to varying levels of rigor, implying varying 
levels of V&V efforts, in Pilch et al. (2004). Recently, we have begun to carefully 
examine the development and deployment of an approach we call the Predictive 
Capability Maturity Model (PCMM)7 that is even more finely aligned with the needs and 
applications of QMU for RIDA. (For some related ideas, see Harmon and Youngblood, 
2003, 2004; and Trucano and Lott, 2003). Measuring predictive capability by some 
scheme also addresses an important concern of ASC, which has been programmatically 
challenged to answer two important questions: (1) How does one quantitatively measure 
and communicate progress in predictive capability? (2) How does one know when 
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predictive capability is sufficient to achieve stated M&S requirements? Both of these are 
difficult problems and require a rigorous M&S predictive-capability assessment 
technique. 
 
Figure 2 schematically presents the two dimensions of importance in the PCMM. The 
horizontal axis measures risk aversion from least to most in a notional four-bin scale. The 
reader should recall our brief comment in Note 2 about the complexity of risk. When we 
speak of risk aversion, we are likely dealing with some of the other dimensions of risk, 
such as psychological and legal, that are beyond the scope of this paper.  
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Figure 2. Key dimensions of the PCMM.  
 
The vertical axis presents attributes of computational models that contribute to predictive 
capability and that should be measured. Current broad attributes of the PCMM that are 
intended to be quantitatively assessed include geometric fidelity, physics and material-
model fidelity, code readiness (software quality engineering [SQE] and code 
verification), validation (separate effects and integral), solution verification (mesh 
adequacy for the solution of numerical partial differential equations, for example), and  
sensitivity analysis and other QMU-related capabilities. We also have suggested that 
other factors contribute to predictive capability beyond the factors addressed by the 
PCMM, generically labeled as the infrastructure foundation. This includes such factors as 
pre- and postprocessing of computational models, the hardware on which these models 
run, the communications and storage systems that move the associated data, and the 
system libraries that are required for software execution. 
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The broad intent of the PCMM (also compatible with discussion in Pilch et al., 2004, and 
Trucano and Lott, 2003) is to view increased risk aversion as demanding more effort in 
these separate attributes, with that effort being fundamentally measured by what is 
delivered. Table 1 gives an example of what we mean by delivering more as risk aversion 
increases. This information is intended to illustrate how the PCMM is constructed, not 
describe the PCMM in detail. The table suggests one approach to dealing with the 
sufficiency of predictive capability, presuming that there is agreement about the tasks that 
must be executed to achieve a given level of risk aversion in the decision process. The 
table also speaks to the need for balancing the technical efforts to better achieve 
predictive capability for a specific goal, such as QMU support in RIDA for a fixed 
stockpile issue. Increased rigor (that is, doing more) comes at a cost in terms of resources 
such as human level-of-effort, time to develop information, CPU usage on given 
hardware, and so on. Careful measurement in the dimensions suggested by the table 
should allow trade-offs to be considered, such as less geometric fidelity but more error 
estimation (or vice versa). 
 
Table 1. Example of PCMM-generated tasks versus risk-aversion level. 
 

 Lowest Lower Higher Highest 

Geometry - 0D w/o significant de-
featuring and stylization  
- 1D w/ significant de-
featuring or stylization 

- 1D w/o significant de-
featuring and stylization 
- 2D w/ significant de-
featuring and stylization 
- Appropriate 0D model 
justified with 1D calcs 

- 2D representation of 
geometry w/o significant de-
featuring and stylization 
- 3D w/ significant de-
featuring and stylization 
- Appropriate lower-
dimensional model justified 
with 2D calcs 

- 3D rep of geometry “as 
built” w/o significant de-
featuring or stylization 
- Appropriate lower-
dimensional model justified 
with 3D model 

Physics and 
Material 
Models 

- Model form unknown - Empirical model forms 
speculated or calibrated to 
represent trends 
- Calibration of physics-
informed models  

- Alternate plausible physics-
informed models 
- Potentially w/ model form 
calibration 

- Established physics-based 
model 

Code 
Readiness 

- Judgment only 
- Critical features and 
capabilities missing or lack 
robustness 
- Sustained unit/regression 
testing w/o significant 
coverage  
- Unsustained unit/regression 
testing w/ or w/o significant 
coverage 

- Code managed and 
assessed against SQE 
requirements 
- Sustained unit/regression 
testing w/ significant 
coverage  
- Unsustained verification 
testing w/ or w/o significant 
coverage 

- Code managed and 
assessed against SQE 
requirements 
- Sustained unit/regression 
testing w/ significant 
coverage 
- Sustained verification 
testing w/ significant 
coverage of separate physics 

- Code managed and 
assessed against SQE 
requirements 
- Sustained unit/regression 
testing w/ significant 
coverage 
- Sustained verification 
testing w/ significant 
coverage of high-order 
interactions 

Validation - Judgment only 
- Insignificant coverage of 
dominant physics 
- Dominant physics assessed 
to be inadequate 

- Qualitative comparisons of 
measurement to prediction 
- Substantially incomplete 
coverage of dominant 
physics 

- Quantitative validation w/o 
assessment of variability and 
uncertainties in diagnostics 
and model 
- Or w/ significant 
extrapolation to application 
parameter space  
- W/ significant coverage of 
dominant physics 

- Quantitative validation w/ 
assessment of variability and 
uncertainties in diagnostics 
and model  
- W/o significant extrapolation 
to application parameter 
space  
- W/ significant coverage of 
dominant physics and their 
interactions 

Solution 
Verification 

- Judgment only 
-Or numerical errors un-
acceptably pollute validation 
or application decisions 

- Explore sensitivity to 
discretization and algorithm 
parameters 

- Estimate numerical errors - Quantify rigorous numerical 
error bounds 

QMU and 
Sensitivities 

- Deterministic Best Estimate 
or nominal margins  
- Judgment-only assessment 
of uncertainty and sensitivity 

- Deterministic margins 
- Or Informal “what if” 
assessment of uncertainty 
and sensitivity 

- Initial attempts to formally 
quantify margins, uncertainty, 
and sensitivity  
- W/ significant judgment  
- Or significant judgment as 
to what to include 

- Formal quantification of 
margins, uncertainty, and 
sensitivity  
- W/o significant judgment as 
to what to include 
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6. Important Challenges for QMU and RIDA in NW 
Lifecycle Decision Making 

 
In this section, we present some challenges that have been raised in the literature to the 
use of a quantitative methodology like QMU in a decision process predicated on RIDA. 
We also provide some rejoinders to these challenges. General references of note for this 
section include Amendola (2001), Apostolakis (2004), Caruso et al. (1999), Garrick and 
Christie (2002), and Pate (1983). 
 

 Subjectivity in QMU-produced knowledge (see Althaus, 2005; Bier, 1999; 
Cooksey, 1996; Garrick and Christie, 2002; Hastie and Dawes, 2001; Jasanoff, 
1986; Niehaus and Szikszai, date unknown; Slovic, 2003). 

 
Excessive subjectivity threatens the usefulness and usability of the results 
provided by QMU. Apostolakis (2004) mentioned explicit criticism that 
epistemic uncertainty and the probability of extreme events cannot be 
realistically quantified.  
 
In response, we observe that subjectivity is always present in complex decisions 
made under conditions of uncertainty and ignorance. QMU simply emphasizes 
and quantifies the presence of subjectivity, while RIDA provides an appropriate 
framework for explicit recognition and utilization of subjectivity in the decision 
process. We also admit that explicit acknowledgement and incorporation of 
subjectivity in RIDA poses new challenges for decision makers. The presence of 
this inference in the results of QMU means that, in addition to ensuring the 
credibility of this information, we must also ensure that decision makers credibly 
use the information. This is part of another well-known challenge that 
uncertainty must not only be quantified, but quantified uncertainty must be 
communicated accurately and in a manner relevant to RIDA.  

 
 Lack of firm understanding of limits of credibility of QMU (see Apostolakis, 

2004; Bier, 1999). 
 

This factor introduces an unwillingness to use the results on the part of the 
decision process, whether RIDA or not.  
 
In response, we suggest that QMU should directly confront the credibility 
challenge. This is one reason that V&V is so prominent in both our thinking and 
our program activities centered on QMU. Sustained, rigorous V&V directly 
attack this challenge, at least for M&S information. Similar challenges exist for 
critical experimental information and other factors in the RIDA process, as well 
as in the formality of the decision process itself. 

 
 Confusion of “risk-informed” with “risk-based” decision-making (Apostolakis, 

2004). It is interesting that Garrick and Christie (2002) analyze the historical 
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nature of this issue carefully, but ultimately argue in favor of moving to a more 
risk-based decision framework for U.S. nuclear power policy.  

 
Another similar criticism is that despite subjectivity and credibility issues, there 
is a tendency to use the results of QMU (QRA/QPA historically) as the primary 
factor in decisions. In other words, there is mission-creep in the decision process 
to become risk-based, perhaps at the desire of key decision makers themselves. 
(Garrick and Christie would apparently disagree with this point.) 
 
In response, we comment that an emphasis on RIDA in a properly controlled 
decision environment, certainly that which we expect in stockpile stewardship, 
will prevent this drift in decision-making fundamentals. Clearly, the criticism is 
patently false in the historical applications of QRA/QPA to nuclear power and 
environmental analyses. Specific guidance in U.S. agencies is provided to avoid 
this fault (see, for example, USNRC, 1998). 

 
 Scientific inertia fosters “analysis paralysis,” which impedes or defeats RIDA. 

 
Scientists wish to reduce epistemic uncertainty, not simply to acknowledge it, 
quantify it, and use it. The more scientific and technical the challenges, the 
greater the tendency to defer decisions while continuing to accumulate 
information through continued scientific research. In certain important questions 
(policy response to global warming, for example), this tendency is especially 
significant. 
 
In response, we contend that the following belief is also false on the basis of the 
historical record: that complicated policy decisions strongly coupled to technical 
complexity will wait an indeterminate amount of time until technical 
understanding is “sufficient.” QMU supports decision making, that is RIDA, on 
time scales that are relevant to policy, and it minimizes the potential for analysis 
paralysis. Decisions will be made with, or without, adequate supporting 
information; it is best that they be made with as much supporting information as 
possible. 

 
 Creeping conservatism. 

 
In essence, this challenge states that belief in the value of epistemic uncertainty 
reduction, rather than “mere” quantification and communication, by the various 
stakeholders in complex decisions can force the application of conservative 
assumptions and constraints in complicated decisions. Petroski (1994), for 
example, discusses (among other things) why bridges fail when lack-of-
knowledge uncertainty is masked by conservative assumptions. 
 
We respond by insisting that conservative factors entering into QMU are 
important to avoid. It is widely believed that such factors distort the decision 
process (Nichols and Zeckhauser, 1988; Sielken et al., 1995; Pate-Cornell, 2002; 
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Diaz, 2003). Conservatism, either in the performance of QMU or in the 
development of constraints on its execution, also can degrade the uncertainty 
analysis as well as prevent meaningful sensitivity analysis (Pate, 1983, 1999). 
Pate-Cornell (1999) analyzes weaknesses in the Sandia QPA for WIPP that were 
introduced by conservative requirements originating in the EPA tasking of this 
analysis. This challenge is mitigated to the extent that such constraints and 
requirements are not part of the architecture of the QMU work. It may be 
difficult to avoid the imposition of such conservative requirements in strongly 
forced “regulatory” decision regimes. 

 

7. Key Summary Points 
 
The key points presented in this report are summarized as follows: 
 

 QMU supports RIDA for stockpile lifecycle management. Stockpile lifecycle 
decisions use QMU-generated information, but these decisions are not solely 
based on that information. Expert judgment that is sensitive to other factors, 
including ignorance, will remain important. 

 
 QMU emphasizes the knowledge basis of decisions, while not ignoring the 

myriad other social, economic, and political factors that are inevitably present in 
complex public-policy decisions. 

 
 QMU highlights the characterization, organization, and communication of 

knowledge, whether experimental, M&S, or other. The canonical form of 
information provided by QMU is BE+U. 

 
 Epistemic uncertainty—lack-of-knowledge uncertainty—is vitally important. 

QMU demands its acknowledgement and quantification, as well as its 
differentiation from aleatory uncertainty (stochastic variability). 

 
 Rigorously assessed reliability of complete weapon systems is an important 

organizing principle for QMU support of stockpile lifecycle RIDA. The 
complexity of weapons systems drives a need for the integrated and quantified 
uncertainty produced by QMU. Historical approaches to RIDA for complex 
technical performance decisions, led by Sandia, are appropriate for tailoring and 
customization to the specific needs of stockpile stewardship. 

 
 V&V is a critical component of QMU.  
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Notes 
 
1. The formal specification of what we mean by risk in this paper is provided by the canonical Kaplan-

Garrick risk triple (Kaplan and Garrick, 1981). This definition consists of three key components: 
(1) What can happen (scenarios)? (2) How likely are the scenarios? and (3) What are the 
consequences? We implicitly use the Kaplan-Garrick risk triple in our intuitive definition of stockpile 
risk: (1) What are performance thresholds and margins? (2) What is the uncertainty in these quantities 
and how likely is it that requirements will be achieved (or not achieved)? and (3) What are the 
consequences of this uncertainty? We discuss the risk triple further in Section 5, specifically in the 
context of M&S information. 

 
2. Althaus (2005) reviews twelve dimensions in which risk can be analyzed: (1) linguistic and 

conceptual, (2) historical and narrative, (3) mathematical and logical, (4) scientific and measurable, 
(5) economic and decisional, (6) psychological and cognitive, (7) anthropological and cultural, 
(8) sociological and societal, (9) artistic and emotional, (10) philosophical and phenomenological, 
(11) legal and judicial, and (12) theological. We do not speak to such a complex taxonomy of risk in 
this paper (our attention is primarily restricted to dimensions “3”, “4”, and “5”), but it is worth keeping 
this complexity in mind to better understand the notion of risk aversion that we discuss with regard to 
the Predictive Capability Maturity Model in Section 5. 

 
3. Klenke (2006) summarizes the key phases of the NW lifecycle that require QMU assessments as 

(1) requirements definition, (2) development and qualification, (3) production, and (4) stockpile 
assessment. As Klenke shows in detail, the need for performance assessment under uncertainty and 
attendant decisions threads through all of these phases. QMU thus provides critical information in each 
case. 

 
4. We have suggested that exceeding a performance threshold defines the margin. This follows from the 

discussion of Sharp and Wood-Schultz (2003). We could also speak of a performance threshold as a 
limit that must not be exceeded. The associated margin is then the distance below the threshold of 
system performance thus defined. This case appears historically, for example in waste repository 
performance assessment (Helton et al., 2000a). 

 
5. The probability of frequency interpretation of epistemic uncertainty stated by Kaplan and Garrick 

(1981) is a second-order probability interpretation of incomplete knowledge. For example, the 
probability of failure to achieve performance margin requirements may be defined by a poorly known 
frequency distribution that provides needed statistical quantities estimating the probability of failure. 
Uncertainty in the frequency distribution may then be quantified by introducing a probabilistic 
ensemble of frequency distributions, for example, by placing probability distributions on the 
parameters of a stated parametric frequency distribution. Estimation of the failure probability then 
requires estimation over the family of frequency distributions (see Kaplan and Garrick for a 
straightforward technical discussion). In their paper, Kaplan and Garrick also use a subjective 
probability interpretation of this family of frequency distributions. A more systematic treatment of this 
approach is found in many works by Helton (for example, see Helton, 1994). 

 
6. QMU and RIDA methodologies are also strongly correlated with current thrusts at Sandia to 

“transform” the scientific basis and application of systems engineering for evolving stockpile 
stewardship. This is shown in the figure as SBET, or Science-Based Engineering for Transformation. 
A whitepaper laying out key issues in SBET is currently being developed by C. Peterson at Sandia 
(Peterson, 2006). 

 
7. Our use of the word “model” in PCMM is as “a thing used as an example to follow” (Oxford English 

Dictionary). We are also purposely emulating the use of the word “model” in the well-known software 
Capability Maturity Model defined by the Carnegie-Mellon University Software Engineering Institute. 
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